diff rgbled/Adafruit_NeoPixel/Adafruit_NeoPixel.cpp @ 1231:ef4ae15f2661

copy in rgb led program for arduino Ignore-this: ee63cf3e2100597625a4392bd95aba0d
author Drew Perttula <drewp@bigasterisk.com>
date Wed, 10 Jun 2015 04:55:39 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/rgbled/Adafruit_NeoPixel/Adafruit_NeoPixel.cpp	Wed Jun 10 04:55:39 2015 +0000
@@ -0,0 +1,1029 @@
+/*-------------------------------------------------------------------------
+  Arduino library to control a wide variety of WS2811- and WS2812-based RGB
+  LED devices such as Adafruit FLORA RGB Smart Pixels and NeoPixel strips.
+  Currently handles 400 and 800 KHz bitstreams on 8, 12 and 16 MHz ATmega
+  MCUs, with LEDs wired for RGB or GRB color order.  8 MHz MCUs provide
+  output on PORTB and PORTD, while 16 MHz chips can handle most output pins
+  (possible exception with upper PORT registers on the Arduino Mega).
+
+  Written by Phil Burgess / Paint Your Dragon for Adafruit Industries,
+  contributions by PJRC and other members of the open source community.
+
+  Adafruit invests time and resources providing this open source code,
+  please support Adafruit and open-source hardware by purchasing products
+  from Adafruit!
+
+  -------------------------------------------------------------------------
+  This file is part of the Adafruit NeoPixel library.
+
+  NeoPixel is free software: you can redistribute it and/or modify
+  it under the terms of the GNU Lesser General Public License as
+  published by the Free Software Foundation, either version 3 of
+  the License, or (at your option) any later version.
+
+  NeoPixel is distributed in the hope that it will be useful,
+  but WITHOUT ANY WARRANTY; without even the implied warranty of
+  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+  GNU Lesser General Public License for more details.
+
+  You should have received a copy of the GNU Lesser General Public
+  License along with NeoPixel.  If not, see
+  <http://www.gnu.org/licenses/>.
+  -------------------------------------------------------------------------*/
+
+#include "Adafruit_NeoPixel.h"
+
+Adafruit_NeoPixel::Adafruit_NeoPixel(uint16_t n, uint8_t p, uint8_t t) :
+   numLEDs(n), numBytes(n * 3), pin(p), brightness(0),
+   pixels(NULL), type(t), endTime(0)
+#ifdef __AVR__
+  ,port(portOutputRegister(digitalPinToPort(p))),
+   pinMask(digitalPinToBitMask(p))
+#endif
+{
+  if((pixels = (uint8_t *)malloc(numBytes))) {
+    memset(pixels, 0, numBytes);
+  }
+  if(t & NEO_GRB) { // GRB vs RGB; might add others if needed
+    rOffset = 1;
+    gOffset = 0;
+    bOffset = 2;
+  } else if (t & NEO_BRG) {
+    rOffset = 1;
+    gOffset = 2;
+    bOffset = 0;
+  } else {
+    rOffset = 0;
+    gOffset = 1;
+    bOffset = 2;
+  }
+  
+}
+
+Adafruit_NeoPixel::~Adafruit_NeoPixel() {
+  if(pixels) free(pixels);
+  pinMode(pin, INPUT);
+}
+
+void Adafruit_NeoPixel::begin(void) {
+  pinMode(pin, OUTPUT);
+  digitalWrite(pin, LOW);
+}
+
+void Adafruit_NeoPixel::show(void) {
+
+  if(!pixels) return;
+
+  // Data latch = 50+ microsecond pause in the output stream.  Rather than
+  // put a delay at the end of the function, the ending time is noted and
+  // the function will simply hold off (if needed) on issuing the
+  // subsequent round of data until the latch time has elapsed.  This
+  // allows the mainline code to start generating the next frame of data
+  // rather than stalling for the latch.
+  while(!canShow());
+  // endTime is a private member (rather than global var) so that mutliple
+  // instances on different pins can be quickly issued in succession (each
+  // instance doesn't delay the next).
+
+  // In order to make this code runtime-configurable to work with any pin,
+  // SBI/CBI instructions are eschewed in favor of full PORT writes via the
+  // OUT or ST instructions.  It relies on two facts: that peripheral
+  // functions (such as PWM) take precedence on output pins, so our PORT-
+  // wide writes won't interfere, and that interrupts are globally disabled
+  // while data is being issued to the LEDs, so no other code will be
+  // accessing the PORT.  The code takes an initial 'snapshot' of the PORT
+  // state, computes 'pin high' and 'pin low' values, and writes these back
+  // to the PORT register as needed.
+
+  noInterrupts(); // Need 100% focus on instruction timing
+
+#ifdef __AVR__
+
+  volatile uint16_t
+    i   = numBytes; // Loop counter
+  volatile uint8_t
+   *ptr = pixels,   // Pointer to next byte
+    b   = *ptr++,   // Current byte value
+    hi,             // PORT w/output bit set high
+    lo;             // PORT w/output bit set low
+
+  // Hand-tuned assembly code issues data to the LED drivers at a specific
+  // rate.  There's separate code for different CPU speeds (8, 12, 16 MHz)
+  // for both the WS2811 (400 KHz) and WS2812 (800 KHz) drivers.  The
+  // datastream timing for the LED drivers allows a little wiggle room each
+  // way (listed in the datasheets), so the conditions for compiling each
+  // case are set up for a range of frequencies rather than just the exact
+  // 8, 12 or 16 MHz values, permitting use with some close-but-not-spot-on
+  // devices (e.g. 16.5 MHz DigiSpark).  The ranges were arrived at based
+  // on the datasheet figures and have not been extensively tested outside
+  // the canonical 8/12/16 MHz speeds; there's no guarantee these will work
+  // close to the extremes (or possibly they could be pushed further).
+  // Keep in mind only one CPU speed case actually gets compiled; the
+  // resulting program isn't as massive as it might look from source here.
+
+// 8 MHz(ish) AVR ---------------------------------------------------------
+#if (F_CPU >= 7400000UL) && (F_CPU <= 9500000UL)
+
+#ifdef NEO_KHZ400
+  if((type & NEO_SPDMASK) == NEO_KHZ800) { // 800 KHz bitstream
+#endif
+
+    volatile uint8_t n1, n2 = 0;  // First, next bits out
+
+    // Squeezing an 800 KHz stream out of an 8 MHz chip requires code
+    // specific to each PORT register.  At present this is only written
+    // to work with pins on PORTD or PORTB, the most likely use case --
+    // this covers all the pins on the Adafruit Flora and the bulk of
+    // digital pins on the Arduino Pro 8 MHz (keep in mind, this code
+    // doesn't even get compiled for 16 MHz boards like the Uno, Mega,
+    // Leonardo, etc., so don't bother extending this out of hand).
+    // Additional PORTs could be added if you really need them, just
+    // duplicate the else and loop and change the PORT.  Each add'l
+    // PORT will require about 150(ish) bytes of program space.
+
+    // 10 instruction clocks per bit: HHxxxxxLLL
+    // OUT instructions:              ^ ^    ^   (T=0,2,7)
+
+#ifdef PORTD // PORTD isn't present on ATtiny85, etc.
+
+    if(port == &PORTD) {
+
+      hi = PORTD |  pinMask;
+      lo = PORTD & ~pinMask;
+      n1 = lo;
+      if(b & 0x80) n1 = hi;
+
+      // Dirty trick: RJMPs proceeding to the next instruction are used
+      // to delay two clock cycles in one instruction word (rather than
+      // using two NOPs).  This was necessary in order to squeeze the
+      // loop down to exactly 64 words -- the maximum possible for a
+      // relative branch.
+
+      asm volatile(
+       "headD:"                   "\n\t" // Clk  Pseudocode
+        // Bit 7:
+        "out  %[port] , %[hi]"    "\n\t" // 1    PORT = hi
+        "mov  %[n2]   , %[lo]"    "\n\t" // 1    n2   = lo
+        "out  %[port] , %[n1]"    "\n\t" // 1    PORT = n1
+        "rjmp .+0"                "\n\t" // 2    nop nop
+        "sbrc %[byte] , 6"        "\n\t" // 1-2  if(b & 0x40)
+         "mov %[n2]   , %[hi]"    "\n\t" // 0-1   n2 = hi
+        "out  %[port] , %[lo]"    "\n\t" // 1    PORT = lo
+        "rjmp .+0"                "\n\t" // 2    nop nop
+        // Bit 6:
+        "out  %[port] , %[hi]"    "\n\t" // 1    PORT = hi
+        "mov  %[n1]   , %[lo]"    "\n\t" // 1    n1   = lo
+        "out  %[port] , %[n2]"    "\n\t" // 1    PORT = n2
+        "rjmp .+0"                "\n\t" // 2    nop nop
+        "sbrc %[byte] , 5"        "\n\t" // 1-2  if(b & 0x20)
+         "mov %[n1]   , %[hi]"    "\n\t" // 0-1   n1 = hi
+        "out  %[port] , %[lo]"    "\n\t" // 1    PORT = lo
+        "rjmp .+0"                "\n\t" // 2    nop nop
+        // Bit 5:
+        "out  %[port] , %[hi]"    "\n\t" // 1    PORT = hi
+        "mov  %[n2]   , %[lo]"    "\n\t" // 1    n2   = lo
+        "out  %[port] , %[n1]"    "\n\t" // 1    PORT = n1
+        "rjmp .+0"                "\n\t" // 2    nop nop
+        "sbrc %[byte] , 4"        "\n\t" // 1-2  if(b & 0x10)
+         "mov %[n2]   , %[hi]"    "\n\t" // 0-1   n2 = hi
+        "out  %[port] , %[lo]"    "\n\t" // 1    PORT = lo
+        "rjmp .+0"                "\n\t" // 2    nop nop
+        // Bit 4:
+        "out  %[port] , %[hi]"    "\n\t" // 1    PORT = hi
+        "mov  %[n1]   , %[lo]"    "\n\t" // 1    n1   = lo
+        "out  %[port] , %[n2]"    "\n\t" // 1    PORT = n2
+        "rjmp .+0"                "\n\t" // 2    nop nop
+        "sbrc %[byte] , 3"        "\n\t" // 1-2  if(b & 0x08)
+         "mov %[n1]   , %[hi]"    "\n\t" // 0-1   n1 = hi
+        "out  %[port] , %[lo]"    "\n\t" // 1    PORT = lo
+        "rjmp .+0"                "\n\t" // 2    nop nop
+        // Bit 3:
+        "out  %[port] , %[hi]"    "\n\t" // 1    PORT = hi
+        "mov  %[n2]   , %[lo]"    "\n\t" // 1    n2   = lo
+        "out  %[port] , %[n1]"    "\n\t" // 1    PORT = n1
+        "rjmp .+0"                "\n\t" // 2    nop nop
+        "sbrc %[byte] , 2"        "\n\t" // 1-2  if(b & 0x04)
+         "mov %[n2]   , %[hi]"    "\n\t" // 0-1   n2 = hi
+        "out  %[port] , %[lo]"    "\n\t" // 1    PORT = lo
+        "rjmp .+0"                "\n\t" // 2    nop nop
+        // Bit 2:
+        "out  %[port] , %[hi]"    "\n\t" // 1    PORT = hi
+        "mov  %[n1]   , %[lo]"    "\n\t" // 1    n1   = lo
+        "out  %[port] , %[n2]"    "\n\t" // 1    PORT = n2
+        "rjmp .+0"                "\n\t" // 2    nop nop
+        "sbrc %[byte] , 1"        "\n\t" // 1-2  if(b & 0x02)
+         "mov %[n1]   , %[hi]"    "\n\t" // 0-1   n1 = hi
+        "out  %[port] , %[lo]"    "\n\t" // 1    PORT = lo
+        "rjmp .+0"                "\n\t" // 2    nop nop
+        // Bit 1:
+        "out  %[port] , %[hi]"    "\n\t" // 1    PORT = hi
+        "mov  %[n2]   , %[lo]"    "\n\t" // 1    n2   = lo
+        "out  %[port] , %[n1]"    "\n\t" // 1    PORT = n1
+        "rjmp .+0"                "\n\t" // 2    nop nop
+        "sbrc %[byte] , 0"        "\n\t" // 1-2  if(b & 0x01)
+         "mov %[n2]   , %[hi]"    "\n\t" // 0-1   n2 = hi
+        "out  %[port] , %[lo]"    "\n\t" // 1    PORT = lo
+        "sbiw %[count], 1"        "\n\t" // 2    i-- (don't act on Z flag yet)
+        // Bit 0:
+        "out  %[port] , %[hi]"    "\n\t" // 1    PORT = hi
+        "mov  %[n1]   , %[lo]"    "\n\t" // 1    n1   = lo
+        "out  %[port] , %[n2]"    "\n\t" // 1    PORT = n2
+        "ld   %[byte] , %a[ptr]+" "\n\t" // 2    b = *ptr++
+        "sbrc %[byte] , 7"        "\n\t" // 1-2  if(b & 0x80)
+         "mov %[n1]   , %[hi]"    "\n\t" // 0-1   n1 = hi
+        "out  %[port] , %[lo]"    "\n\t" // 1    PORT = lo
+        "brne headD"              "\n"   // 2    while(i) (Z flag set above)
+      : [byte]  "+r" (b),
+        [n1]    "+r" (n1),
+        [n2]    "+r" (n2),
+        [count] "+w" (i)
+      : [port]   "I" (_SFR_IO_ADDR(PORTD)),
+        [ptr]    "e" (ptr),
+        [hi]     "r" (hi),
+        [lo]     "r" (lo));
+
+    } else if(port == &PORTB) {
+
+#endif // PORTD
+
+      // Same as above, just switched to PORTB and stripped of comments.
+      hi = PORTB |  pinMask;
+      lo = PORTB & ~pinMask;
+      n1 = lo;
+      if(b & 0x80) n1 = hi;
+
+      asm volatile(
+       "headB:"                   "\n\t"
+        "out  %[port] , %[hi]"    "\n\t"
+        "mov  %[n2]   , %[lo]"    "\n\t"
+        "out  %[port] , %[n1]"    "\n\t"
+        "rjmp .+0"                "\n\t"
+        "sbrc %[byte] , 6"        "\n\t"
+         "mov %[n2]   , %[hi]"    "\n\t"
+        "out  %[port] , %[lo]"    "\n\t"
+        "rjmp .+0"                "\n\t"
+        "out  %[port] , %[hi]"    "\n\t"
+        "mov  %[n1]   , %[lo]"    "\n\t"
+        "out  %[port] , %[n2]"    "\n\t"
+        "rjmp .+0"                "\n\t"
+        "sbrc %[byte] , 5"        "\n\t"
+         "mov %[n1]   , %[hi]"    "\n\t"
+        "out  %[port] , %[lo]"    "\n\t"
+        "rjmp .+0"                "\n\t"
+        "out  %[port] , %[hi]"    "\n\t"
+        "mov  %[n2]   , %[lo]"    "\n\t"
+        "out  %[port] , %[n1]"    "\n\t"
+        "rjmp .+0"                "\n\t"
+        "sbrc %[byte] , 4"        "\n\t"
+         "mov %[n2]   , %[hi]"    "\n\t"
+        "out  %[port] , %[lo]"    "\n\t"
+        "rjmp .+0"                "\n\t"
+        "out  %[port] , %[hi]"    "\n\t"
+        "mov  %[n1]   , %[lo]"    "\n\t"
+        "out  %[port] , %[n2]"    "\n\t"
+        "rjmp .+0"                "\n\t"
+        "sbrc %[byte] , 3"        "\n\t"
+         "mov %[n1]   , %[hi]"    "\n\t"
+        "out  %[port] , %[lo]"    "\n\t"
+        "rjmp .+0"                "\n\t"
+        "out  %[port] , %[hi]"    "\n\t"
+        "mov  %[n2]   , %[lo]"    "\n\t"
+        "out  %[port] , %[n1]"    "\n\t"
+        "rjmp .+0"                "\n\t"
+        "sbrc %[byte] , 2"        "\n\t"
+         "mov %[n2]   , %[hi]"    "\n\t"
+        "out  %[port] , %[lo]"    "\n\t"
+        "rjmp .+0"                "\n\t"
+        "out  %[port] , %[hi]"    "\n\t"
+        "mov  %[n1]   , %[lo]"    "\n\t"
+        "out  %[port] , %[n2]"    "\n\t"
+        "rjmp .+0"                "\n\t"
+        "sbrc %[byte] , 1"        "\n\t"
+         "mov %[n1]   , %[hi]"    "\n\t"
+        "out  %[port] , %[lo]"    "\n\t"
+        "rjmp .+0"                "\n\t"
+        "out  %[port] , %[hi]"    "\n\t"
+        "mov  %[n2]   , %[lo]"    "\n\t"
+        "out  %[port] , %[n1]"    "\n\t"
+        "rjmp .+0"                "\n\t"
+        "sbrc %[byte] , 0"        "\n\t"
+         "mov %[n2]   , %[hi]"    "\n\t"
+        "out  %[port] , %[lo]"    "\n\t"
+        "sbiw %[count], 1"        "\n\t"
+        "out  %[port] , %[hi]"    "\n\t"
+        "mov  %[n1]   , %[lo]"    "\n\t"
+        "out  %[port] , %[n2]"    "\n\t"
+        "ld   %[byte] , %a[ptr]+" "\n\t"
+        "sbrc %[byte] , 7"        "\n\t"
+         "mov %[n1]   , %[hi]"    "\n\t"
+        "out  %[port] , %[lo]"    "\n\t"
+        "brne headB"              "\n"
+      : [byte] "+r" (b), [n1] "+r" (n1), [n2] "+r" (n2), [count] "+w" (i)
+      : [port] "I" (_SFR_IO_ADDR(PORTB)), [ptr] "e" (ptr), [hi] "r" (hi),
+        [lo] "r" (lo));
+
+#ifdef PORTD
+    }    // endif PORTB
+#endif
+
+#ifdef NEO_KHZ400
+  } else { // end 800 KHz, do 400 KHz
+
+    // Timing is more relaxed; unrolling the inner loop for each bit is
+    // not necessary.  Still using the peculiar RJMPs as 2X NOPs, not out
+    // of need but just to trim the code size down a little.
+    // This 400-KHz-datastream-on-8-MHz-CPU code is not quite identical
+    // to the 800-on-16 code later -- the hi/lo timing between WS2811 and
+    // WS2812 is not simply a 2:1 scale!
+
+    // 20 inst. clocks per bit: HHHHxxxxxxLLLLLLLLLL
+    // ST instructions:         ^   ^     ^          (T=0,4,10)
+
+    volatile uint8_t next, bit;
+
+    hi   = *port |  pinMask;
+    lo   = *port & ~pinMask;
+    next = lo;
+    bit  = 8;
+
+    asm volatile(
+     "head20:"                  "\n\t" // Clk  Pseudocode    (T =  0)
+      "st   %a[port], %[hi]"    "\n\t" // 2    PORT = hi     (T =  2)
+      "sbrc %[byte] , 7"        "\n\t" // 1-2  if(b & 128)
+       "mov  %[next], %[hi]"    "\n\t" // 0-1   next = hi    (T =  4)
+      "st   %a[port], %[next]"  "\n\t" // 2    PORT = next   (T =  6)
+      "mov  %[next] , %[lo]"    "\n\t" // 1    next = lo     (T =  7)
+      "dec  %[bit]"             "\n\t" // 1    bit--         (T =  8)
+      "breq nextbyte20"         "\n\t" // 1-2  if(bit == 0)
+      "rol  %[byte]"            "\n\t" // 1    b <<= 1       (T = 10)
+      "st   %a[port], %[lo]"    "\n\t" // 2    PORT = lo     (T = 12)
+      "rjmp .+0"                "\n\t" // 2    nop nop       (T = 14)
+      "rjmp .+0"                "\n\t" // 2    nop nop       (T = 16)
+      "rjmp .+0"                "\n\t" // 2    nop nop       (T = 18)
+      "rjmp head20"             "\n\t" // 2    -> head20 (next bit out)
+     "nextbyte20:"              "\n\t" //                    (T = 10)
+      "st   %a[port], %[lo]"    "\n\t" // 2    PORT = lo     (T = 12)
+      "nop"                     "\n\t" // 1    nop           (T = 13)
+      "ldi  %[bit]  , 8"        "\n\t" // 1    bit = 8       (T = 14)
+      "ld   %[byte] , %a[ptr]+" "\n\t" // 2    b = *ptr++    (T = 16)
+      "sbiw %[count], 1"        "\n\t" // 2    i--           (T = 18)
+      "brne head20"             "\n"   // 2    if(i != 0) -> (next byte)
+      : [port]  "+e" (port),
+        [byte]  "+r" (b),
+        [bit]   "+r" (bit),
+        [next]  "+r" (next),
+        [count] "+w" (i)
+      : [hi]    "r" (hi),
+        [lo]    "r" (lo),
+        [ptr]   "e" (ptr));
+  }
+#endif
+
+// 12 MHz(ish) AVR --------------------------------------------------------
+#elif (F_CPU >= 11100000UL) && (F_CPU <= 14300000UL)
+
+#ifdef NEO_KHZ400
+  if((type & NEO_SPDMASK) == NEO_KHZ800) { // 800 KHz bitstream
+#endif
+
+    // In the 12 MHz case, an optimized 800 KHz datastream (no dead time
+    // between bytes) requires a PORT-specific loop similar to the 8 MHz
+    // code (but a little more relaxed in this case).
+
+    // 15 instruction clocks per bit: HHHHxxxxxxLLLLL
+    // OUT instructions:              ^   ^     ^     (T=0,4,10)
+
+    volatile uint8_t next;
+
+#ifdef PORTD
+
+    if(port == &PORTD) {
+
+      hi   = PORTD |  pinMask;
+      lo   = PORTD & ~pinMask;
+      next = lo;
+      if(b & 0x80) next = hi;
+
+      // Don't "optimize" the OUT calls into the bitTime subroutine;
+      // we're exploiting the RCALL and RET as 3- and 4-cycle NOPs!
+      asm volatile(
+       "headD:"                   "\n\t" //        (T =  0)
+        "out   %[port], %[hi]"    "\n\t" //        (T =  1)
+        "rcall bitTimeD"          "\n\t" // Bit 7  (T = 15)
+        "out   %[port], %[hi]"    "\n\t"
+        "rcall bitTimeD"          "\n\t" // Bit 6
+        "out   %[port], %[hi]"    "\n\t"
+        "rcall bitTimeD"          "\n\t" // Bit 5
+        "out   %[port], %[hi]"    "\n\t"
+        "rcall bitTimeD"          "\n\t" // Bit 4
+        "out   %[port], %[hi]"    "\n\t"
+        "rcall bitTimeD"          "\n\t" // Bit 3
+        "out   %[port], %[hi]"    "\n\t"
+        "rcall bitTimeD"          "\n\t" // Bit 2
+        "out   %[port], %[hi]"    "\n\t"
+        "rcall bitTimeD"          "\n\t" // Bit 1
+        // Bit 0:
+        "out  %[port] , %[hi]"    "\n\t" // 1    PORT = hi    (T =  1)
+        "rjmp .+0"                "\n\t" // 2    nop nop      (T =  3)
+        "ld   %[byte] , %a[ptr]+" "\n\t" // 2    b = *ptr++   (T =  5)
+        "out  %[port] , %[next]"  "\n\t" // 1    PORT = next  (T =  6)
+        "mov  %[next] , %[lo]"    "\n\t" // 1    next = lo    (T =  7)
+        "sbrc %[byte] , 7"        "\n\t" // 1-2  if(b & 0x80) (T =  8)
+         "mov %[next] , %[hi]"    "\n\t" // 0-1    next = hi  (T =  9)
+        "nop"                     "\n\t" // 1                 (T = 10)
+        "out  %[port] , %[lo]"    "\n\t" // 1    PORT = lo    (T = 11)
+        "sbiw %[count], 1"        "\n\t" // 2    i--          (T = 13)
+        "brne headD"              "\n\t" // 2    if(i != 0) -> (next byte)
+         "rjmp doneD"             "\n\t"
+        "bitTimeD:"               "\n\t" //      nop nop nop     (T =  4)
+         "out  %[port], %[next]"  "\n\t" // 1    PORT = next     (T =  5)
+         "mov  %[next], %[lo]"    "\n\t" // 1    next = lo       (T =  6)
+         "rol  %[byte]"           "\n\t" // 1    b <<= 1         (T =  7)
+         "sbrc %[byte], 7"        "\n\t" // 1-2  if(b & 0x80)    (T =  8)
+          "mov %[next], %[hi]"    "\n\t" // 0-1   next = hi      (T =  9)
+         "nop"                    "\n\t" // 1                    (T = 10)
+         "out  %[port], %[lo]"    "\n\t" // 1    PORT = lo       (T = 11)
+         "ret"                    "\n\t" // 4    nop nop nop nop (T = 15)
+         "doneD:"                 "\n"
+        : [byte]  "+r" (b),
+          [next]  "+r" (next),
+          [count] "+w" (i)
+        : [port]   "I" (_SFR_IO_ADDR(PORTD)),
+          [ptr]    "e" (ptr),
+          [hi]     "r" (hi),
+          [lo]     "r" (lo));
+
+    } else if(port == &PORTB) {
+
+#endif // PORTD
+
+      hi   = PORTB |  pinMask;
+      lo   = PORTB & ~pinMask;
+      next = lo;
+      if(b & 0x80) next = hi;
+
+      // Same as above, just set for PORTB & stripped of comments
+      asm volatile(
+       "headB:"                   "\n\t"
+        "out   %[port], %[hi]"    "\n\t"
+        "rcall bitTimeB"          "\n\t"
+        "out   %[port], %[hi]"    "\n\t"
+        "rcall bitTimeB"          "\n\t"
+        "out   %[port], %[hi]"    "\n\t"
+        "rcall bitTimeB"          "\n\t"
+        "out   %[port], %[hi]"    "\n\t"
+        "rcall bitTimeB"          "\n\t"
+        "out   %[port], %[hi]"    "\n\t"
+        "rcall bitTimeB"          "\n\t"
+        "out   %[port], %[hi]"    "\n\t"
+        "rcall bitTimeB"          "\n\t"
+        "out   %[port], %[hi]"    "\n\t"
+        "rcall bitTimeB"          "\n\t"
+        "out  %[port] , %[hi]"    "\n\t"
+        "rjmp .+0"                "\n\t"
+        "ld   %[byte] , %a[ptr]+" "\n\t"
+        "out  %[port] , %[next]"  "\n\t"
+        "mov  %[next] , %[lo]"    "\n\t"
+        "sbrc %[byte] , 7"        "\n\t"
+         "mov %[next] , %[hi]"    "\n\t"
+        "nop"                     "\n\t"
+        "out  %[port] , %[lo]"    "\n\t"
+        "sbiw %[count], 1"        "\n\t"
+        "brne headB"              "\n\t"
+         "rjmp doneB"             "\n\t"
+        "bitTimeB:"               "\n\t"
+         "out  %[port], %[next]"  "\n\t"
+         "mov  %[next], %[lo]"    "\n\t"
+         "rol  %[byte]"           "\n\t"
+         "sbrc %[byte], 7"        "\n\t"
+          "mov %[next], %[hi]"    "\n\t"
+         "nop"                    "\n\t"
+         "out  %[port], %[lo]"    "\n\t"
+         "ret"                    "\n\t"
+         "doneB:"                 "\n"
+        : [byte] "+r" (b), [next] "+r" (next), [count] "+w" (i)
+        : [port] "I" (_SFR_IO_ADDR(PORTB)), [ptr] "e" (ptr), [hi] "r" (hi),
+          [lo] "r" (lo));
+
+#ifdef PORTD
+    }
+#endif
+
+#ifdef NEO_KHZ400
+  } else { // 400 KHz
+
+    // 30 instruction clocks per bit: HHHHHHxxxxxxxxxLLLLLLLLLLLLLLL
+    // ST instructions:               ^     ^        ^    (T=0,6,15)
+
+    volatile uint8_t next, bit;
+
+    hi   = *port |  pinMask;
+    lo   = *port & ~pinMask;
+    next = lo;
+    bit  = 8;
+
+    asm volatile(
+     "head30:"                  "\n\t" // Clk  Pseudocode    (T =  0)
+      "st   %a[port], %[hi]"    "\n\t" // 2    PORT = hi     (T =  2)
+      "sbrc %[byte] , 7"        "\n\t" // 1-2  if(b & 128)
+       "mov  %[next], %[hi]"    "\n\t" // 0-1   next = hi    (T =  4)
+      "rjmp .+0"                "\n\t" // 2    nop nop       (T =  6)
+      "st   %a[port], %[next]"  "\n\t" // 2    PORT = next   (T =  8)
+      "rjmp .+0"                "\n\t" // 2    nop nop       (T = 10)
+      "rjmp .+0"                "\n\t" // 2    nop nop       (T = 12)
+      "rjmp .+0"                "\n\t" // 2    nop nop       (T = 14)
+      "nop"                     "\n\t" // 1    nop           (T = 15)
+      "st   %a[port], %[lo]"    "\n\t" // 2    PORT = lo     (T = 17)
+      "rjmp .+0"                "\n\t" // 2    nop nop       (T = 19)
+      "dec  %[bit]"             "\n\t" // 1    bit--         (T = 20)
+      "breq nextbyte30"         "\n\t" // 1-2  if(bit == 0)
+      "rol  %[byte]"            "\n\t" // 1    b <<= 1       (T = 22)
+      "rjmp .+0"                "\n\t" // 2    nop nop       (T = 24)
+      "rjmp .+0"                "\n\t" // 2    nop nop       (T = 26)
+      "rjmp .+0"                "\n\t" // 2    nop nop       (T = 28)
+      "rjmp head30"             "\n\t" // 2    -> head30 (next bit out)
+     "nextbyte30:"              "\n\t" //                    (T = 22)
+      "nop"                     "\n\t" // 1    nop           (T = 23)
+      "ldi  %[bit]  , 8"        "\n\t" // 1    bit = 8       (T = 24)
+      "ld   %[byte] , %a[ptr]+" "\n\t" // 2    b = *ptr++    (T = 26)
+      "sbiw %[count], 1"        "\n\t" // 2    i--           (T = 28)
+      "brne head30"             "\n"   // 1-2  if(i != 0) -> (next byte)
+      : [port]  "+e" (port),
+        [byte]  "+r" (b),
+        [bit]   "+r" (bit),
+        [next]  "+r" (next),
+        [count] "+w" (i)
+      : [hi]     "r" (hi),
+        [lo]     "r" (lo),
+        [ptr]    "e" (ptr));
+  }
+#endif
+
+// 16 MHz(ish) AVR --------------------------------------------------------
+#elif (F_CPU >= 15400000UL) && (F_CPU <= 19000000L)
+
+#ifdef NEO_KHZ400
+  if((type & NEO_SPDMASK) == NEO_KHZ800) { // 800 KHz bitstream
+#endif
+
+    // WS2811 and WS2812 have different hi/lo duty cycles; this is
+    // similar but NOT an exact copy of the prior 400-on-8 code.
+
+    // 20 inst. clocks per bit: HHHHHxxxxxxxxLLLLLLL
+    // ST instructions:         ^   ^        ^       (T=0,5,13)
+
+    volatile uint8_t next, bit;
+
+    hi   = *port |  pinMask;
+    lo   = *port & ~pinMask;
+    next = lo;
+    bit  = 8;
+
+    asm volatile(
+     "head20:"                   "\n\t" // Clk  Pseudocode    (T =  0)
+      "st   %a[port],  %[hi]"    "\n\t" // 2    PORT = hi     (T =  2)
+      "sbrc %[byte],  7"         "\n\t" // 1-2  if(b & 128)
+       "mov  %[next], %[hi]"     "\n\t" // 0-1   next = hi    (T =  4)
+      "dec  %[bit]"              "\n\t" // 1    bit--         (T =  5)
+      "st   %a[port],  %[next]"  "\n\t" // 2    PORT = next   (T =  7)
+      "mov  %[next] ,  %[lo]"    "\n\t" // 1    next = lo     (T =  8)
+      "breq nextbyte20"          "\n\t" // 1-2  if(bit == 0) (from dec above)
+      "rol  %[byte]"             "\n\t" // 1    b <<= 1       (T = 10)
+      "rjmp .+0"                 "\n\t" // 2    nop nop       (T = 12)
+      "nop"                      "\n\t" // 1    nop           (T = 13)
+      "st   %a[port],  %[lo]"    "\n\t" // 2    PORT = lo     (T = 15)
+      "nop"                      "\n\t" // 1    nop           (T = 16)
+      "rjmp .+0"                 "\n\t" // 2    nop nop       (T = 18)
+      "rjmp head20"              "\n\t" // 2    -> head20 (next bit out)
+     "nextbyte20:"               "\n\t" //                    (T = 10)
+      "ldi  %[bit]  ,  8"        "\n\t" // 1    bit = 8       (T = 11)
+      "ld   %[byte] ,  %a[ptr]+" "\n\t" // 2    b = *ptr++    (T = 13)
+      "st   %a[port], %[lo]"     "\n\t" // 2    PORT = lo     (T = 15)
+      "nop"                      "\n\t" // 1    nop           (T = 16)
+      "sbiw %[count], 1"         "\n\t" // 2    i--           (T = 18)
+       "brne head20"             "\n"   // 2    if(i != 0) -> (next byte)
+      : [port]  "+e" (port),
+        [byte]  "+r" (b),
+        [bit]   "+r" (bit),
+        [next]  "+r" (next),
+        [count] "+w" (i)
+      : [ptr]    "e" (ptr),
+        [hi]     "r" (hi),
+        [lo]     "r" (lo));
+
+#ifdef NEO_KHZ400
+  } else { // 400 KHz
+
+    // The 400 KHz clock on 16 MHz MCU is the most 'relaxed' version.
+
+    // 40 inst. clocks per bit: HHHHHHHHxxxxxxxxxxxxLLLLLLLLLLLLLLLLLLLL
+    // ST instructions:         ^       ^           ^         (T=0,8,20)
+
+    volatile uint8_t next, bit;
+
+    hi   = *port |  pinMask;
+    lo   = *port & ~pinMask;
+    next = lo;
+    bit  = 8;
+
+    asm volatile(
+     "head40:"                  "\n\t" // Clk  Pseudocode    (T =  0)
+      "st   %a[port], %[hi]"    "\n\t" // 2    PORT = hi     (T =  2)
+      "sbrc %[byte] , 7"        "\n\t" // 1-2  if(b & 128)
+       "mov  %[next] , %[hi]"   "\n\t" // 0-1   next = hi    (T =  4)
+      "rjmp .+0"                "\n\t" // 2    nop nop       (T =  6)
+      "rjmp .+0"                "\n\t" // 2    nop nop       (T =  8)
+      "st   %a[port], %[next]"  "\n\t" // 2    PORT = next   (T = 10)
+      "rjmp .+0"                "\n\t" // 2    nop nop       (T = 12)
+      "rjmp .+0"                "\n\t" // 2    nop nop       (T = 14)
+      "rjmp .+0"                "\n\t" // 2    nop nop       (T = 16)
+      "rjmp .+0"                "\n\t" // 2    nop nop       (T = 18)
+      "rjmp .+0"                "\n\t" // 2    nop nop       (T = 20)
+      "st   %a[port], %[lo]"    "\n\t" // 2    PORT = lo     (T = 22)
+      "nop"                     "\n\t" // 1    nop           (T = 23)
+      "mov  %[next] , %[lo]"    "\n\t" // 1    next = lo     (T = 24)
+      "dec  %[bit]"             "\n\t" // 1    bit--         (T = 25)
+      "breq nextbyte40"         "\n\t" // 1-2  if(bit == 0)
+      "rol  %[byte]"            "\n\t" // 1    b <<= 1       (T = 27)
+      "nop"                     "\n\t" // 1    nop           (T = 28)
+      "rjmp .+0"                "\n\t" // 2    nop nop       (T = 30)
+      "rjmp .+0"                "\n\t" // 2    nop nop       (T = 32)
+      "rjmp .+0"                "\n\t" // 2    nop nop       (T = 34)
+      "rjmp .+0"                "\n\t" // 2    nop nop       (T = 36)
+      "rjmp .+0"                "\n\t" // 2    nop nop       (T = 38)
+      "rjmp head40"             "\n\t" // 2    -> head40 (next bit out)
+     "nextbyte40:"              "\n\t" //                    (T = 27)
+      "ldi  %[bit]  , 8"        "\n\t" // 1    bit = 8       (T = 28)
+      "ld   %[byte] , %a[ptr]+" "\n\t" // 2    b = *ptr++    (T = 30)
+      "rjmp .+0"                "\n\t" // 2    nop nop       (T = 32)
+      "st   %a[port], %[lo]"    "\n\t" // 2    PORT = lo     (T = 34)
+      "rjmp .+0"                "\n\t" // 2    nop nop       (T = 36)
+      "sbiw %[count], 1"        "\n\t" // 2    i--           (T = 38)
+      "brne head40"             "\n"   // 1-2  if(i != 0) -> (next byte)
+      : [port]  "+e" (port),
+        [byte]  "+r" (b),
+        [bit]   "+r" (bit),
+        [next]  "+r" (next),
+        [count] "+w" (i)
+      : [ptr]    "e" (ptr),
+        [hi]     "r" (hi),
+        [lo]     "r" (lo));
+  }
+#endif
+
+#else
+ #error "CPU SPEED NOT SUPPORTED"
+#endif
+
+#elif defined(__arm__)
+
+#if defined(__MK20DX128__) || defined(__MK20DX256__) // Teensy 3.0 & 3.1
+#define CYCLES_800_T0H  (F_CPU / 4000000)
+#define CYCLES_800_T1H  (F_CPU / 1250000)
+#define CYCLES_800      (F_CPU /  800000)
+#define CYCLES_400_T0H  (F_CPU / 2000000)
+#define CYCLES_400_T1H  (F_CPU /  833333)
+#define CYCLES_400      (F_CPU /  400000)
+
+  uint8_t          *p   = pixels,
+                   *end = p + numBytes, pix, mask;
+  volatile uint8_t *set = portSetRegister(pin),
+                   *clr = portClearRegister(pin);
+  uint32_t          cyc;
+
+  ARM_DEMCR    |= ARM_DEMCR_TRCENA;
+  ARM_DWT_CTRL |= ARM_DWT_CTRL_CYCCNTENA;
+
+#ifdef NEO_KHZ400
+  if((type & NEO_SPDMASK) == NEO_KHZ800) { // 800 KHz bitstream
+#endif
+    cyc = ARM_DWT_CYCCNT + CYCLES_800;
+    while(p < end) {
+      pix = *p++;
+      for(mask = 0x80; mask; mask >>= 1) {
+        while(ARM_DWT_CYCCNT - cyc < CYCLES_800);
+        cyc  = ARM_DWT_CYCCNT;
+        *set = 1;
+        if(pix & mask) {
+          while(ARM_DWT_CYCCNT - cyc < CYCLES_800_T1H);
+        } else {
+          while(ARM_DWT_CYCCNT - cyc < CYCLES_800_T0H);
+        }
+        *clr = 1;
+      }
+    }
+    while(ARM_DWT_CYCCNT - cyc < CYCLES_800);
+#ifdef NEO_KHZ400
+  } else { // 400 kHz bitstream
+    cyc = ARM_DWT_CYCCNT + CYCLES_400;
+    while(p < end) {
+      pix = *p++;
+      for(mask = 0x80; mask; mask >>= 1) {
+        while(ARM_DWT_CYCCNT - cyc < CYCLES_400);
+        cyc  = ARM_DWT_CYCCNT;
+        *set = 1;
+        if(pix & mask) {
+          while(ARM_DWT_CYCCNT - cyc < CYCLES_400_T1H);
+        } else {
+          while(ARM_DWT_CYCCNT - cyc < CYCLES_400_T0H);
+        }
+        *clr = 1;
+      }
+    }
+    while(ARM_DWT_CYCCNT - cyc < CYCLES_400);
+  }
+#endif
+
+
+
+
+
+#elif defined(__MKL26Z64__) // Teensy-LC
+
+#if F_CPU == 48000000
+  uint8_t          *p   = pixels,
+		   pix, count, dly,
+                   bitmask = digitalPinToBitMask(pin);
+  volatile uint8_t *reg = portSetRegister(pin);
+  uint32_t         num = numBytes;
+  asm volatile(
+	"L%=_begin:"				"\n\t"
+	"ldrb	%[pix], [%[p], #0]"		"\n\t"
+	"lsl	%[pix], #24"			"\n\t"
+	"movs	%[count], #7"			"\n\t"
+	"L%=_loop:"				"\n\t"
+	"lsl	%[pix], #1"			"\n\t"
+	"bcs	L%=_loop_one"			"\n\t"
+	"L%=_loop_zero:"
+	"strb	%[bitmask], [%[reg], #0]"	"\n\t"
+	"movs	%[dly], #4"			"\n\t"
+	"L%=_loop_delay_T0H:"			"\n\t"
+	"sub	%[dly], #1"			"\n\t"
+	"bne	L%=_loop_delay_T0H"		"\n\t"
+	"strb	%[bitmask], [%[reg], #4]"	"\n\t"
+	"movs	%[dly], #13"			"\n\t"
+	"L%=_loop_delay_T0L:"			"\n\t"
+	"sub	%[dly], #1"			"\n\t"
+	"bne	L%=_loop_delay_T0L"		"\n\t"
+	"b	L%=_next"			"\n\t"
+	"L%=_loop_one:"
+	"strb	%[bitmask], [%[reg], #0]"	"\n\t"
+	"movs	%[dly], #13"			"\n\t"
+	"L%=_loop_delay_T1H:"			"\n\t"
+	"sub	%[dly], #1"			"\n\t"
+	"bne	L%=_loop_delay_T1H"		"\n\t"
+	"strb	%[bitmask], [%[reg], #4]"	"\n\t"
+	"movs	%[dly], #4"			"\n\t"
+	"L%=_loop_delay_T1L:"			"\n\t"
+	"sub	%[dly], #1"			"\n\t"
+	"bne	L%=_loop_delay_T1L"		"\n\t"
+	"nop"					"\n\t"
+	"L%=_next:"				"\n\t"
+	"sub	%[count], #1"			"\n\t"
+	"bne	L%=_loop"			"\n\t"
+	"lsl	%[pix], #1"			"\n\t"
+	"bcs	L%=_last_one"			"\n\t"
+	"L%=_last_zero:"
+	"strb	%[bitmask], [%[reg], #0]"	"\n\t"
+	"movs	%[dly], #4"			"\n\t"
+	"L%=_last_delay_T0H:"			"\n\t"
+	"sub	%[dly], #1"			"\n\t"
+	"bne	L%=_last_delay_T0H"		"\n\t"
+	"strb	%[bitmask], [%[reg], #4]"	"\n\t"
+	"movs	%[dly], #10"			"\n\t"
+	"L%=_last_delay_T0L:"			"\n\t"
+	"sub	%[dly], #1"			"\n\t"
+	"bne	L%=_last_delay_T0L"		"\n\t"
+	"b	L%=_repeat"			"\n\t"
+	"L%=_last_one:"
+	"strb	%[bitmask], [%[reg], #0]"	"\n\t"
+	"movs	%[dly], #13"			"\n\t"
+	"L%=_last_delay_T1H:"			"\n\t"
+	"sub	%[dly], #1"			"\n\t"
+	"bne	L%=_last_delay_T1H"		"\n\t"
+	"strb	%[bitmask], [%[reg], #4]"	"\n\t"
+	"movs	%[dly], #1"			"\n\t"
+	"L%=_last_delay_T1L:"			"\n\t"
+	"sub	%[dly], #1"			"\n\t"
+	"bne	L%=_last_delay_T1L"		"\n\t"
+	"nop"					"\n\t"
+	"L%=_repeat:"				"\n\t"
+	"add	%[p], #1"			"\n\t"
+	"sub	%[num], #1"			"\n\t"
+	"bne	L%=_begin"			"\n\t"
+	"L%=_done:"				"\n\t"
+	: [p] "+r" (p),
+	  [pix] "=&r" (pix),
+	  [count] "=&r" (count),
+	  [dly] "=&r" (dly),
+	  [num] "+r" (num)
+	: [bitmask] "r" (bitmask),
+	  [reg] "r" (reg)
+  );
+#else
+#error "Sorry, only 48 MHz is supported, please set Tools > CPU Speed to 48 MHz"
+#endif
+
+
+#else // Arduino Due
+
+  #define SCALE      VARIANT_MCK / 2UL / 1000000UL
+  #define INST       (2UL * F_CPU / VARIANT_MCK)
+  #define TIME_800_0 ((int)(0.40 * SCALE + 0.5) - (5 * INST))
+  #define TIME_800_1 ((int)(0.80 * SCALE + 0.5) - (5 * INST))
+  #define PERIOD_800 ((int)(1.25 * SCALE + 0.5) - (5 * INST))
+  #define TIME_400_0 ((int)(0.50 * SCALE + 0.5) - (5 * INST))
+  #define TIME_400_1 ((int)(1.20 * SCALE + 0.5) - (5 * INST))
+  #define PERIOD_400 ((int)(2.50 * SCALE + 0.5) - (5 * INST))
+
+  int             pinMask, time0, time1, period, t;
+  Pio            *port;
+  volatile WoReg *portSet, *portClear, *timeValue, *timeReset;
+  uint8_t        *p, *end, pix, mask;
+
+  pmc_set_writeprotect(false);
+  pmc_enable_periph_clk((uint32_t)TC3_IRQn);
+  TC_Configure(TC1, 0,
+    TC_CMR_WAVE | TC_CMR_WAVSEL_UP | TC_CMR_TCCLKS_TIMER_CLOCK1);
+  TC_Start(TC1, 0);
+
+  pinMask   = g_APinDescription[pin].ulPin; // Don't 'optimize' these into
+  port      = g_APinDescription[pin].pPort; // declarations above.  Want to
+  portSet   = &(port->PIO_SODR);            // burn a few cycles after
+  portClear = &(port->PIO_CODR);            // starting timer to minimize
+  timeValue = &(TC1->TC_CHANNEL[0].TC_CV);  // the initial 'while'.
+  timeReset = &(TC1->TC_CHANNEL[0].TC_CCR);
+  p         =  pixels;
+  end       =  p + numBytes;
+  pix       = *p++;
+  mask      = 0x80;
+
+#ifdef NEO_KHZ400
+  if((type & NEO_SPDMASK) == NEO_KHZ800) { // 800 KHz bitstream
+#endif
+    time0 = TIME_800_0;
+    time1 = TIME_800_1;
+    period = PERIOD_800;
+#ifdef NEO_KHZ400
+  } else { // 400 KHz bitstream
+    time0 = TIME_400_0;
+    time1 = TIME_400_1;
+    period = PERIOD_400;
+  }
+#endif
+
+  for(t = time0;; t = time0) {
+    if(pix & mask) t = time1;
+    while(*timeValue < period);
+    *portSet   = pinMask;
+    *timeReset = TC_CCR_CLKEN | TC_CCR_SWTRG;
+    while(*timeValue < t);
+    *portClear = pinMask;
+    if(!(mask >>= 1)) {   // This 'inside-out' loop logic utilizes
+      if(p >= end) break; // idle time to minimize inter-byte delays.
+      pix = *p++;
+      mask = 0x80;
+    }
+  }
+  while(*timeValue < period); // Wait for last bit
+  TC_Stop(TC1, 0);
+
+#endif // end Arduino Due
+
+#endif // end Architecture select
+
+  interrupts();
+  endTime = micros(); // Save EOD time for latch on next call
+}
+
+// Set the output pin number
+void Adafruit_NeoPixel::setPin(uint8_t p) {
+  pinMode(pin, INPUT);
+  pin = p;
+  pinMode(p, OUTPUT);
+  digitalWrite(p, LOW);
+#ifdef __AVR__
+  port    = portOutputRegister(digitalPinToPort(p));
+  pinMask = digitalPinToBitMask(p);
+#endif
+}
+
+// Set pixel color from separate R,G,B components:
+void Adafruit_NeoPixel::setPixelColor(
+ uint16_t n, uint8_t r, uint8_t g, uint8_t b) {
+  if(n < numLEDs) {
+    if(brightness) { // See notes in setBrightness()
+      r = (r * brightness) >> 8;
+      g = (g * brightness) >> 8;
+      b = (b * brightness) >> 8;
+    }
+    uint8_t *p = &pixels[n * 3];
+    p[rOffset] = r;
+    p[gOffset] = g;
+    p[bOffset] = b;
+  }
+}
+
+// Set pixel color from 'packed' 32-bit RGB color:
+void Adafruit_NeoPixel::setPixelColor(uint16_t n, uint32_t c) {
+  if(n < numLEDs) {
+    uint8_t
+      r = (uint8_t)(c >> 16),
+      g = (uint8_t)(c >>  8),
+      b = (uint8_t)c;
+    if(brightness) { // See notes in setBrightness()
+      r = (r * brightness) >> 8;
+      g = (g * brightness) >> 8;
+      b = (b * brightness) >> 8;
+    }
+    uint8_t *p = &pixels[n * 3];
+    p[rOffset] = r;
+    p[gOffset] = g;
+    p[bOffset] = b;
+  }
+}
+
+// Convert separate R,G,B into packed 32-bit RGB color.
+// Packed format is always RGB, regardless of LED strand color order.
+uint32_t Adafruit_NeoPixel::Color(uint8_t r, uint8_t g, uint8_t b) {
+  return ((uint32_t)r << 16) | ((uint32_t)g <<  8) | b;
+}
+
+// Query color from previously-set pixel (returns packed 32-bit RGB value)
+uint32_t Adafruit_NeoPixel::getPixelColor(uint16_t n) const {
+  if(n >= numLEDs) {
+    // Out of bounds, return no color.
+    return 0;
+  }
+  uint8_t *p = &pixels[n * 3];
+  uint32_t c = ((uint32_t)p[rOffset] << 16) |
+               ((uint32_t)p[gOffset] <<  8) |
+                (uint32_t)p[bOffset];
+  // Adjust this back up to the true color, as setting a pixel color will
+  // scale it back down again.
+  if(brightness) { // See notes in setBrightness()
+    //Cast the color to a byte array
+    uint8_t * c_ptr =reinterpret_cast<uint8_t*>(&c);
+    c_ptr[0] = (c_ptr[0] << 8)/brightness;
+    c_ptr[1] = (c_ptr[1] << 8)/brightness;
+    c_ptr[2] = (c_ptr[2] << 8)/brightness;
+  }
+  return c; // Pixel # is out of bounds
+}
+
+// Returns pointer to pixels[] array.  Pixel data is stored in device-
+// native format and is not translated here.  Application will need to be
+// aware whether pixels are RGB vs. GRB and handle colors appropriately.
+uint8_t *Adafruit_NeoPixel::getPixels(void) const {
+  return pixels;
+}
+
+uint16_t Adafruit_NeoPixel::numPixels(void) const {
+  return numLEDs;
+}
+
+// Adjust output brightness; 0=darkest (off), 255=brightest.  This does
+// NOT immediately affect what's currently displayed on the LEDs.  The
+// next call to show() will refresh the LEDs at this level.  However,
+// this process is potentially "lossy," especially when increasing
+// brightness.  The tight timing in the WS2811/WS2812 code means there
+// aren't enough free cycles to perform this scaling on the fly as data
+// is issued.  So we make a pass through the existing color data in RAM
+// and scale it (subsequent graphics commands also work at this
+// brightness level).  If there's a significant step up in brightness,
+// the limited number of steps (quantization) in the old data will be
+// quite visible in the re-scaled version.  For a non-destructive
+// change, you'll need to re-render the full strip data.  C'est la vie.
+void Adafruit_NeoPixel::setBrightness(uint8_t b) {
+  // Stored brightness value is different than what's passed.
+  // This simplifies the actual scaling math later, allowing a fast
+  // 8x8-bit multiply and taking the MSB.  'brightness' is a uint8_t,
+  // adding 1 here may (intentionally) roll over...so 0 = max brightness
+  // (color values are interpreted literally; no scaling), 1 = min
+  // brightness (off), 255 = just below max brightness.
+  uint8_t newBrightness = b + 1;
+  if(newBrightness != brightness) { // Compare against prior value
+    // Brightness has changed -- re-scale existing data in RAM
+    uint8_t  c,
+            *ptr           = pixels,
+             oldBrightness = brightness - 1; // De-wrap old brightness value
+    uint16_t scale;
+    if(oldBrightness == 0) scale = 0; // Avoid /0
+    else if(b == 255) scale = 65535 / oldBrightness;
+    else scale = (((uint16_t)newBrightness << 8) - 1) / oldBrightness;
+    for(uint16_t i=0; i<numBytes; i++) {
+      c      = *ptr;
+      *ptr++ = (c * scale) >> 8;
+    }
+    brightness = newBrightness;
+  }
+}
+
+//Return the brightness value
+uint8_t Adafruit_NeoPixel::getBrightness(void) const {
+  return brightness - 1;
+}
+
+void Adafruit_NeoPixel::clear() {
+  memset(pixels, 0, numBytes);
+}