Mercurial > code > home > repos > light9
view web/lib/sylvester.d.ts @ 2405:69ca2b2fc133
overcomplicated attempt at persisting the pane layout in the rdf graph
this was hard because we have to somehow wait for the graph to load before config'ing the panes
author | drewp@bigasterisk.com |
---|---|
date | Fri, 17 May 2024 16:58:26 -0700 |
parents | 4556eebe5d73 |
children |
line wrap: on
line source
// local fixes; the DefinitelyTyped one had "is not a module" errors // Type definitions for sylvester 0.1.3 // Project: https://github.com/jcoglan/sylvester // Definitions by: Stephane Alie <https://github.com/StephaneAlie> // Definitions: https://github.com/DefinitelyTyped/DefinitelyTyped // === Sylvester === // Vector and Matrix mathematics modules for JavaScript // Copyright (c) 2007 James Coglan export declare module Sylvester { interface VectorStatic { /** * Constructor function. */ create(elements: Vector|Array<number>): Vector; i: Vector; j: Vector; k: Vector; /** * Random vector of size n. * * @param {number} n The vector size. */ Random(n: number): Vector; /** * Vector filled with zeros. * * @param {number} n The vector size. */ Zero(n: number): Vector; } interface MatrixStatic { /** * Constructor function. * * @param {Array<number>|Array<Array<number>>|Vector|Matrix} elements The elements. */ create(elements: Array<number>|Array<Array<number>>|Vector | Matrix): Matrix; /** * Identity matrix of size n. * * @param {number} n The size. */ I(n: number): Matrix; /** * Diagonal matrix - all off-diagonal elements are zero * * @param {any} elements The elements. */ Diagonal(elements: Array<number>|Array<Array<number>>|Vector | Matrix): Matrix; /** * Rotation matrix about some axis. If no axis is supplied, assume we're after a 2D transform. * * @param {number} theta The angle in radians. * @param {Vector} a [Optional] The axis. */ Rotation(theta: number, a?: Vector): Matrix; RotationX(t: number): Matrix; RotationY(t: number): Matrix; RotationZ(t: number): Matrix; /** * Random matrix of n rows, m columns. * * @param {number} n The number of rows. * @param {number} m The number of columns. */ Random(n: number, m: number): Matrix; /** * Matrix filled with zeros. * * @param {number} n The number of rows. * @param {number} m The number of columns. */ Zero(n: number, m: number): Matrix; } interface LineStatic { /** * Constructor function. * * @param Array<number>|Vector anchor The anchor vector. * @param Array<number>|Vector direction The direction vector. */ create(anchor: Array<number>|Vector, direction: Array<number>|Vector): Line; X: Line; Y: Line; Z: Line; } interface PlaneStatic { /** * Constructor function. */ create(anchor: Array<number>|Vector, normal: Array<number>|Vector): Plane; /** * Constructor function. */ create(anchor: Array<number>|Vector, v1: Array<number>|Vector, v2: Array<number>|Vector): Plane; XY: Plane; YZ: Plane; ZX: Plane; YX: Plane; } } interface Vector { /** * Gets an array containing the vector's elements. */ elements: Array<number>; /** * Returns element i of the vector. */ e(i: number): number; /** * Returns the number of elements the vector has. */ dimensions(): number; /** * Returns the modulus ('length') of the vector. */ modulus(): number; /** * Returns true if the vector is equal to the argument. * * @param {Vector|Array<number>} vector The vector to compare equality. */ eql(vector: Vector|Array<number>): boolean; /** * Returns a copy of the vector. */ dup(): Vector; /** * Maps the vector to another vector according to the given function. * * @param {Function} fn The function to apply to each element (x, i) => {}. */ map(fn: (x: number, i: number) => any): Vector; /** * Calls the iterator for each element of the vector in turn. * * @param {Function} fn The function to apply to each element (x, i) => {}. */ each(fn: (x: number, i: number) => any): void; /** * Returns a new vector created by normalizing the receiver. */ toUnitVector(): Vector; /** * Returns the angle between the vector and the argument (also a vector). * * @param {Vector} vector The other vector to calculate the angle. */ angleFrom(vector: Vector): number; /** * Returns true if the vector is parallel to the argument. * * @param {Vector} vector The other vector. */ isParallelTo(vector: Vector): boolean; /** * Returns true if the vector is antiparallel to the argument. * * @param {Vector} vector The other vector. */ isAntiparallelTo(vector: Vector): boolean; /** * Returns true iff the vector is perpendicular to the argument. * * @param {Vector} vector The other vector. */ isPerpendicularTo(vector: Vector): boolean; /** * Returns the result of adding the argument to the vector. * * @param {Vector|Array<number>} vector The vector. */ add(vector: Vector|Array<number>): Vector; /** * Returns the result of subtracting the argument from the vector. * * @param {Vector|Array<number>} vector The vector. */ subtract(vector: Vector|Array<number>): Vector; /** * Returns the result of multiplying the elements of the vector by the argument. * * @param {number} k The value by which to multiply the vector. */ multiply(k: number): Vector; /** * Returns the result of multiplying the elements of the vector by the argument (Alias for multiply(k)). * * @param {number} k The value by which to multiply the vector. */ x(k: number): Vector; /** * Returns the scalar product of the vector with the argument. Both vectors must have equal dimensionality. * * @param: {Vector|Array<number>} vector The other vector. */ dot(vector: Vector|Array<number>): number; /** * Returns the vector product of the vector with the argument. Both vectors must have dimensionality 3. * * @param {Vector|Array<number>} vector The other vector. */ cross(vector: Vector|Array<number>): Vector; /** * Returns the (absolute) largest element of the vector. */ max(): number; /** * Returns the index of the first match found. * * @param {number} x The value. */ indexOf(x: number): number; /** * Returns a diagonal matrix with the vector's elements as its diagonal elements. */ toDiagonalMatrix(): Matrix; /** * Returns the result of rounding the elements of the vector. */ round(): Vector; /** * Returns a copy of the vector with elements set to the given value if they differ from * it by less than Sylvester.precision. * * @param {number} x The value to snap to. */ snapTo(x: number): Vector; /** * Returns the vector's distance from the argument, when considered as a point in space. * * @param {Vector|Line|Plane} obj The object to calculate the distance. */ distanceFrom(obj: Vector|Line|Plane): number; /** * Returns true if the vector is point on the given line. * * @param {Line} line The line. */ liesOn(line: Line): boolean; /** * Return true if the vector is a point in the given plane. * * @param {Plane} plane The plane. */ liesIn(plane: Plane): boolean; /** * Rotates the vector about the given object. The object should be a point if the vector is 2D, * and a line if it is 3D. Be careful with line directions! * * @param {number|Matrix} t The angle in radians or in rotation matrix. * @param {Vector|Line} obj The rotation axis. */ rotate(t: number|Matrix, obj: Vector|Line): Vector; /** * Returns the result of reflecting the point in the given point, line or plane. * * @param {Vector|Line|Plane} obj The object. */ reflectionIn(obj: Vector|Line|Plane): Vector; /** * Utility to make sure vectors are 3D. If they are 2D, a zero z-component is added. */ to3D(): Vector; /** * Returns a string representation of the vector. */ inspect(): string; /** * Set vector's elements from an array. * * @param {Vector|Array<number>} els The elements. */ setElements(els: Vector|Array<number>): Vector; } interface Matrix { /** * Gets a nested array containing the matrix's elements. */ elements: Array<Array<number>>; /** * Returns element (i,j) of the matrix. * * @param {number} i The row index. * @param {number} j The column index. */ e(i: number, j: number): any; /** * Returns row k of the matrix as a vector. * * @param {number} i The row index. */ row(i: number): Vector; /** * Returns column k of the matrix as a vector. * * @param {number} j The column index. */ col(j: number): Vector; /** * Returns the number of rows/columns the matrix has. * * @return {any} An object { rows: , cols: }. */ dimensions(): any; /** * Returns the number of rows in the matrix. */ rows(): number; /** * Returns the number of columns in the matrix. */ cols(): number; /** * Returns true if the matrix is equal to the argument. You can supply a vector as the argument, * in which case the receiver must be a one-column matrix equal to the vector. * * @param {Vector|Matrix} matrix The argument to compare. */ eql(matrix: Vector|Matrix): boolean; /** * Returns a copy of the matrix. */ dup(): Matrix; /** * Maps the matrix to another matrix (of the same dimensions) according to the given function. * * @param {Function} fn The function. */ map(fn: (x: number, i: number, j: number) => any): Matrix; /** * Returns true iff the argument has the same dimensions as the matrix. * * @param {Matrix} matrix The other matrix. */ isSameSizeAs(matrix: Matrix): boolean; /** * Returns the result of adding the argument to the matrix. * * @param {Matrix} matrix The matrix to add. */ add(matrix: Matrix): Matrix; /** * Returns the result of subtracting the argument from the matrix. * * @param {Matrix} matrix The matrix to substract. */ subtract(matrix: Matrix): Matrix; /** * Returns true iff the matrix can multiply the argument from the left. * * @param {Matrix} matrix The matrix. */ canMultiplyFromLeft(matrix: Matrix): boolean; /** * Returns the result of multiplying the matrix from the right by the argument. If the argument is a scalar * then just multiply all the elements. If the argument is a vector, a vector is returned, which saves you * having to remember calling col(1) on the result. * * @param {number|Matrix} matrix The multiplier. */ multiply(matrix: number|Matrix): Matrix; /** * Returns the result of multiplying the matrix from the right by the argument. If the argument is a scalar * then just multiply all the elements. If the argument is a vector, a vector is returned, which saves you * having to remember calling col(1) on the result. * * @param {Vector} vector The multiplier. */ multiply(vector: Vector): Vector; x(matrix: number|Matrix): Matrix; x(vector: Vector): Vector; /** * Returns a submatrix taken from the matrix. Argument order is: start row, start col, nrows, ncols. * Element selection wraps if the required index is outside the matrix's bounds, so you could use * this to perform row/column cycling or copy-augmenting. * * @param {number} a Starting row index. * @param {number} b Starting column index. * @param {number} c Number of rows. * @param {number} d Number of columns. */ minor(a: number, b: number, c: number, d: number): Matrix; /** * Returns the transpose of the matrix. */ transpose(): Matrix; /** * Returns true if the matrix is square. */ isSquare(): boolean; /** * Returns the (absolute) largest element of the matrix. */ max(): number; /** * Returns the indeces of the first match found by reading row-by-row from left to right. * * @param {number} x The value. * * @return {any} The element indeces i.e: { row:1, col:1 } */ indexOf(x: number): any; /** * If the matrix is square, returns the diagonal elements as a vector; otherwise, returns null. */ diagonal(): Vector; /** * Make the matrix upper (right) triangular by Gaussian elimination. This method only adds multiples * of rows to other rows. No rows are scaled up or switched, and the determinant is preserved. */ toRightTriangular(): Matrix; toUpperTriangular(): Matrix; /** * Returns the determinant for square matrices. */ determinant(): number; det(): number; /** * Returns true if the matrix is singular. */ isSingular(): boolean; /** * Returns the trace for square matrices. */ trace(): number; tr(): number; /** * Returns the rank of the matrix. */ rank(): number; rk(): number; /** * Returns the result of attaching the given argument to the right-hand side of the matrix. * * @param {Matrix|Vector} matrix The matrix or vector. */ augment(matrix: Matrix|Vector): Matrix; /** * Returns the inverse (if one exists) using Gauss-Jordan. */ inverse(): Matrix; inv(): Matrix; /** * Returns the result of rounding all the elements. */ round(): Matrix; /** * Returns a copy of the matrix with elements set to the given value if they differ from it * by less than Sylvester.precision. * * @param {number} x The value. */ snapTo(x: number): Matrix; /** * Returns a string representation of the matrix. */ inspect(): string; /** * Set the matrix's elements from an array. If the argument passed is a vector, the resulting matrix * will be a single column. * * @param {Array<number>|Array<Array<number>>|Vector|Matrix} matrix The elements. */ setElements(matrix: Array<number>|Array<Array<number>>|Vector|Matrix): Matrix; } interface Line { /** * Gets the 3D vector corresponding to a point on the line. */ anchor: Vector; /** * Gets a normalized 3D vector representing the line's direction. */ direction: Vector; /** * Returns true if the argument occupies the same space as the line. * * @param {Line} line The other line. */ eql(line: Line): boolean; /** * Returns a copy of the line. */ dup(): Line; /** * Returns the result of translating the line by the given vector/array. * * @param {Vector|Array<number>} vector The translation vector. */ translate(vector: Vector|Array<number>): Line; /** * Returns true if the line is parallel to the argument. Here, 'parallel to' means that the argument's * direction is either parallel or antiparallel to the line's own direction. A line is parallel to a * plane if the two do not have a unique intersection. * * @param {Line|Plane} obj The object. */ isParallelTo(obj: Line|Plane): boolean; /** * Returns the line's perpendicular distance from the argument, which can be a point, a line or a plane. * * @param {Vector|Line|Plane} obj The object. */ distanceFrom(obj: Vector|Line|Plane): number; /** * Returns true if the argument is a point on the line. * * @param {Vector} point The point. */ contains(point: Vector): boolean; /** * Returns true if the line lies in the given plane. * * @param {Plane} plane The plane. */ liesIn(plane: Plane): boolean; /** * Returns true if the line has a unique point of intersection with the argument. * * @param {Line|Plane} obj The object. */ intersects(obj: Line|Plane): boolean; /** * Returns the unique intersection point with the argument, if one exists. * * @param {Line|Plane} obj The object. */ intersectionWith(obj: Line|Plane): Vector; /** * Returns the point on the line that is closest to the given point or line. * * @param {Vector|Line} obj The object. */ pointClosestTo(obj: Vector|Line): Vector; /** * Returns a copy of the line rotated by t radians about the given line. Works by finding the argument's * closest point to this line's anchor point (call this C) and rotating the anchor about C. Also rotates * the line's direction about the argument's. Be careful with this - the rotation axis' direction * affects the outcome! * * @param {number} t The angle in radians. * @param {Vector|Line} axis The axis. */ rotate(t: number, axis: Vector|Line): Line; /** * Returns the line's reflection in the given point or line. * * @param {Vector|Line|Plane} obj The object. */ reflectionIn(obj: Vector|Line|Plane): Line; /** * Set the line's anchor point and direction. * * @param {Array<number>|Vector} anchor The anchor vector. * @param {Array<number>|Vector} direction The direction vector. */ setVectors(anchor: Array<number>|Vector, direction: Array<number>|Vector): Line; } interface Plane { /** * Gets the 3D vector corresponding to a point in the plane. */ anchor: Vector; /** * Gets a normalized 3D vector perpendicular to the plane. */ normal: Vector; /** * Returns true if the plane occupies the same space as the argument. * * @param {Plane} plane The other plane. */ eql(plane: Plane): boolean; /** * Returns a copy of the plane. */ dup(): Plane; /** * Returns the result of translating the plane by the given vector. * * @param {Array<number>|Vector} vector The translation vector. */ translate(vector: Array<number>|Vector): Plane; /** * Returns true if the plane is parallel to the argument. Will return true if the planes are equal, * or if you give a line and it lies in the plane. * * @param {Line|Plane} obj The object. */ isParallelTo(obj: Line|Plane): boolean; /** * Returns true if the receiver is perpendicular to the argument. * * @param {Plane} plane The other plane. */ isPerpendicularTo(plane: Plane): boolean; /** * Returns the plane's distance from the given object (point, line or plane). * * @parm {Vector|Line|Plane} obj The object. */ distanceFrom(obj: Vector|Line|Plane): number; /** * Returns true if the plane contains the given point or line. * * @param {Vector|Line} obj The object. */ contains(obj: Vector|Line): boolean; /** * Returns true if the plane has a unique point/line of intersection with the argument. * * @param {Line|Plane} obj The object. */ intersects(obj: Line|Plane): boolean; /** * Returns the unique intersection with the argument, if one exists. * * @param {Line} line The line. */ intersectionWith(line: Line): Vector; /** * Returns the unique intersection with the argument, if one exists. * * @param {Plane} plane The plane. */ intersectionWith(plane: Plane): Line; /** * Returns the point in the plane closest to the given point. * * @param {Vector} point The point. */ pointClosestTo(point: Vector): Vector; /** * Returns a copy of the plane, rotated by t radians about the given line. See notes on Line#rotate. * * @param {number} t The angle in radians. * @param {Line} axis The line axis. */ rotate(t: number, axis: Line): Plane; /** * Returns the reflection of the plane in the given point, line or plane. * * @param {Vector|Line|Plane} obj The object. */ reflectionIn(obj: Vector|Line|Plane): Plane; /** * Sets the anchor point and normal to the plane. Normal vector is normalised before storage. * * @param {Array<number>|Vector} anchor The anchor vector. * @param {Array<number>|Vector} normal The normal vector. */ setVectors(anchor: Array<number>|Vector, normal: Array<number>|Vector): Plane; /** * Sets the anchor point and normal to the plane. The normal is calculated by assuming the three points * should lie in the same plane. Normal vector is normalised before storage. * * @param {Array<number>|Vector} anchor The anchor vector. * @param {Array<number>|Vector} v1 The first direction vector. * @param {Array<number>|Vector} v2 The second direction vector. */ setVectors(anchor: Array<number>|Vector, v1: Array<number>|Vector, v2: Array<number>|Vector): Plane; } declare module Sylvester { export var version: string; export var precision: number; } declare var Vector: Sylvester.VectorStatic; declare var Matrix: Sylvester.MatrixStatic; declare var Line: Sylvester.LineStatic; declare var Plane: Sylvester.PlaneStatic; /** * Constructor function. * * @param {Vector|Array<number} elements The elements. */ declare function $V(elements: Vector|Array<number>): Vector; /** * Constructor function. * * @param {Array<number>|Array<Array<number>>|Vector|Matrix} elements The elements. */ declare function $M(elements: Array<number>|Array<Array<number>>|Vector | Matrix): Matrix; /** * Constructor function. * * @param Array<number>|Vector anchor The anchor vector. * @param Array<number>|Vector direction The direction vector. */ declare function $L(anchor: Array<number>|Vector, direction: Array<number>|Vector): Line; /** * Constructor function. * * @param {Array<number>|Vector} anchor The anchor vector. * @param {Array<number>|Vector} normal The normal vector. */ declare function $P(anchor: Array<number>|Vector, normal: Array<number>|Vector): Plane; /** * Constructor function. * * @param {Array<number>|Vector} anchor The anchor vector. * @param {Array<number>|Vector} v1 The first direction vector. * @param {Array<number>|Vecotr} v2 The second direction vector. */ declare function $P(anchor: Array<number>|Vector, v1: Array<number>|Vector, v2: Array<number>|Vector): Plane;