Mercurial > code > home > repos > sco-bot
view scobot/service/query.py @ 13:403eff4a16c8
fix up indexer flow and fastapi server
author | drewp@bigasterisk.com |
---|---|
date | Thu, 11 Jul 2024 21:32:24 -0700 |
parents | 6622bacb0b84 |
children | b9c2b7fedbcd |
line wrap: on
line source
from scobot.index.access import SearchIndexRO from whoosh.qparser import QueryParser import json from pathlib import Path from pprint import pprint from contextlib import asynccontextmanager # from pymilvus import MilvusClient # from milvus_model.dense.onnx import OnnxEmbeddingFunction from fastapi import FastAPI from tqdm import tqdm def rebuild(client, embedding_fn, dim): client.drop_collection(collection_name="demo_collection") if not client.has_collection(collection_name="demo_collection"): client.create_collection( collection_name="demo_collection", dimension=dim, ) docs = [] for i, (bbox, phrase) in tqdm(enumerate( phrasesFromFile( Path("data") / "Meetings2226Minutes_20240702182359526 (1).pdf")), desc="rebuilding", unit=' phrase'): [vector] = embedding_fn.encode_documents([phrase]) doc = { "id": i, "vector": vector, "text": phrase, "bbox": json.dumps(bbox), } docs.append(doc) res = client.insert(collection_name="demo_collection", data=docs) print('insert:', res['insert_count']) # https://huggingface.co/models?pipeline_tag=feature-extraction&library=onnx&sort=trending # embedding_fn = OnnxEmbeddingFunction(model_name="jinaai/jina-embeddings-v2-base-en") # client = MilvusClient("milvus_demo.db") # rebuild(client, embedding_fn, dim=embedding_fn.dim) # search(q, embedding_fn, client) @asynccontextmanager async def lifespan(app: FastAPI): app.state.index = SearchIndexRO('/tmp/scoindex') yield app = FastAPI(lifespan=lifespan) @app.get("/sco/query") def read_query1(q: str): index = app.state.index query = QueryParser("phrase", index.ix.schema).parse(q) pprint(query) results = list(index.searcher.search(query)) return {"results": results}