view query.py @ 2:82428652cda1

rewrite
author drewp@bigasterisk.com
date Wed, 03 Jul 2024 20:20:08 -0700
parents ca5da75f03ee
children
line wrap: on
line source

import json
import sys
from pathlib import Path

from tqdm import tqdm

from pymilvus import MilvusClient
from milvus_model.dense.onnx import OnnxEmbeddingFunction

from extract_pdf import phrasesFromFile


def rebuild(client, embedding_fn, dim):
    client.drop_collection(collection_name="demo_collection")
    if not client.has_collection(collection_name="demo_collection"):
        client.create_collection(
            collection_name="demo_collection",
            dimension=dim,
        )

    docs = []
    for i, (bbox, phrase) in tqdm(enumerate(
            phrasesFromFile(
                Path("data") /
                "Meetings2226Minutes_20240702182359526 (1).pdf"))):
        [vector] = embedding_fn.encode_documents([phrase])
        doc = {
            "id": i,
            "vector": vector,
            "text": phrase,
            "bbox": json.dumps(bbox),
        }
        docs.append(doc)
    res = client.insert(collection_name="demo_collection", data=docs)
    print('insert:', res)


def search(q, embedding_fn, client):
    query_vectors = embedding_fn.encode_queries([q])

    [query_result] = client.search(
        collection_name="demo_collection",
        data=query_vectors,
        limit=5,
        output_fields=["text"],
    )
    query_result.sort(key=lambda x: x["distance"], reverse=True)

    for row in query_result:
        print(f'{row["distance"]:.6f} {row["entity"]["text"]}')


q, = sys.argv[1:]

embedding_fn = OnnxEmbeddingFunction(model_name="GPTCache/paraphrase-albert-onnx")
client = MilvusClient("milvus_demo.db")
rebuild(client, embedding_fn, dim=embedding_fn.dim)
search(q, embedding_fn, client)