Files
@ 623836db99af
Branch filter:
Location: light9/light9/metrics.py
623836db99af
3.2 KiB
text/x-python
fix ts warning
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 | """for easier porting, and less boilerplate, allow these styles using the
form of the call to set up the right type of metric automatically:
from metrics import metrics
metrics.setProcess('pretty_name')
@metrics('loop').time() # a common one to get the fps of each service. Gets us qty and time
def frame():
if err:
metrics('foo_errors').incr() # if you incr it, it's a counter
@metrics('foo_calls').time() # qty & time because it's a decorator
def foo():
metrics('goal_fps').set(f) # a gauge because we called set()
with metrics('recompute'): ... # ctxmgr also makes a timer
time_this_part()
I don't see a need for labels yet, but maybe some code will want like
metrics('foo', label1=one). Need histogram? Info?
"""
from typing import Dict, Tuple, Callable, Type, TypeVar, cast
from prometheus_client import Counter, Gauge, Metric, Summary
from prometheus_client.exposition import generate_latest
from prometheus_client.registry import REGISTRY
_created: Dict[str, Metric] = {}
# _process=sys.argv[0]
# def setProcess(name: str):
# global _process
# _process = name
MT = TypeVar("MT")
class _MetricsRequest:
def __init__(self, name: str, **labels):
self.name = name
self.labels = labels
def _ensure(self, cls: Type[MT]) -> MT:
if self.name not in _created:
_created[self.name] = cls(name=self.name, documentation=self.name, labelnames=self.labels.keys())
m = _created[self.name]
if self.labels:
m = m.labels(**self.labels)
return m
def __call__(self, fn) -> Callable:
return timed_fn
def set(self, v: float):
self._ensure(Gauge).set(v)
def inc(self):
self._ensure(Counter).inc()
def offset(self, amount: float):
self._ensure(Gauge).inc(amount)
def time(self):
return self._ensure(Summary).time()
def observe(self, x: float):
return self._ensure(Summary).observe(x)
def __enter__(self):
return self._ensure(Summary).__enter__()
def metrics(name: str, **labels):
return _MetricsRequest(name, **labels)
"""
stuff we used to have in greplin. Might be nice to get (client-side-computed) min/max/stddev back.
class PmfStat(Stat):
A stat that stores min, max, mean, standard deviation, and some
percentiles for arbitrary floating-point data. This is potentially a
bit expensive, so its child values are only updated once every
twenty seconds.
i think prometheus covers this one:
import psutil
def gatherProcessStats():
procStats = scales.collection('/process',
scales.DoubleStat('time'),
scales.DoubleStat('cpuPercent'),
scales.DoubleStat('memMb'),
)
proc = psutil.Process()
lastCpu = [0.]
def updateTimeStat():
now = time.time()
procStats.time = round(now, 3)
if now - lastCpu[0] > 3:
procStats.cpuPercent = round(proc.cpu_percent(), 6) # (since last call)
lastCpu[0] = now
procStats.memMb = round(proc.memory_info().rss / 1024 / 1024, 6)
task.LoopingCall(updateTimeStat).start(.1)
"""
class M:
def __call__(self, name):
return
|