Files
@ fc5675f5b756
Branch filter:
Location: light9/light9/paint/solve.py
fc5675f5b756
9.1 KiB
text/x-python
captureDevice tool for sweeping through light settings and grabbing pics
Ignore-this: 8f3171e4e29727e0aa78e43edff0a1d9
Ignore-this: 8f3171e4e29727e0aa78e43edff0a1d9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 | from __future__ import division
from light9.namespaces import RDF, L9, DEV
from PIL import Image
import numpy
import scipy.misc, scipy.ndimage, scipy.optimize
import cairo
# numpy images in this file are (x, y, c) layout.
def numpyFromCairo(surface):
w, h = surface.get_width(), surface.get_height()
a = numpy.frombuffer(surface.get_data(), numpy.uint8)
a.shape = h, w, 4
a = a.transpose((1, 0, 2))
return a[:w,:h,:3]
def numpyFromPil(img):
return scipy.misc.fromimage(img, mode='RGB').transpose((1, 0, 2))
def loadNumpy(path, thumb=(100, 100)):
img = Image.open(path)
img.thumbnail(thumb)
return numpyFromPil(img)
def saveNumpy(path, img):
scipy.misc.imsave(path, img.transpose((1, 0, 2)))
def parseHex(h):
if h[0] != '#': raise ValueError(h)
return [int(h[i:i+2], 16) for i in 1, 3, 5]
def toHex(rgbFloat):
return '#%02x%02x%02x' % tuple(int(v * 255) for v in rgbFloat)
def scaledHex(h, scale):
rgb = parseHex(h)
rgb8 = (rgb * scale).astype(numpy.uint8)
return '#%02x%02x%02x' % tuple(rgb8)
def colorRatio(col1, col2):
rgb1 = parseHex(col1)
rgb2 = parseHex(col2)
return tuple([round(a / b, 3) for a, b in zip(rgb1, rgb2)])
def brightest(img):
return numpy.amax(img, axis=(0, 1))
def getVal(graph, subj):
lit = graph.value(subj, L9['value']) or graph.value(subj, L9['scaledValue'])
ret = lit.toPython()
if isinstance(ret, decimal.Decimal):
ret = float(ret)
return ret
def loadNumpy(path, thumb=(100, 100)):
img = Image.open(path)
img.thumbnail(thumb)
return numpyFromPil(img)
class Settings(object):
def __init__(self, graph, settingsList):
self._compiled = {} # dev: { attr: val }
for row in settingsList:
self._compiled.setdefault(row[0], {})[row[1]] = row[2]
def toVector(self):
"""
def fromVector(cls, graph, vector):
"""update our settings from a vector with the same ordering as toVector would make"""
def distanceTo(self, other):
class Solver(object):
def __init__(self, graph):
self.graph = graph
self.samples = {} # uri: Image array
self.fromPath = {} # basename: image array
self.blurredSamples = {}
self.sampleSettings = {} # (uri, path): { dev: { attr: val } }
def loadSamples(self):
"""learn what lights do from images"""
with self.graph.currentState() as g:
for samp in g.subjects(RDF.type, L9['LightSample']):
base = g.value(samp, L9['path']).toPython()
path = 'show/dance2017/cam/test/%s' % base
self.samples[samp] = self.fromPath[base] = loadNumpy(path)
self.blurredSamples[samp] = self._blur(self.samples[samp])
for s in g.objects(samp, L9['setting']):
d = g.value(s, L9['device'])
da = g.value(s, L9['deviceAttr'])
v = getVal(g, s)
key = (samp, g.value(samp, L9['path']).toPython())
self.sampleSettings.setdefault(key, {}).setdefault(d, {})[da] = v
def _blur(self, img):
return scipy.ndimage.gaussian_filter(img, 10, 0, mode='nearest')
def draw(self, painting, w, h):
surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, w, h)
ctx = cairo.Context(surface)
ctx.rectangle(0, 0, w, h)
ctx.fill()
ctx.set_line_cap(cairo.LINE_CAP_ROUND)
ctx.set_line_width(20)
for stroke in painting['strokes']:
for pt in stroke['pts']:
op = ctx.move_to if pt is stroke['pts'][0] else ctx.line_to
op(pt[0] / 4, pt[1] / 4) # todo scale
r,g,b = parseHex(stroke['color'])
ctx.set_source_rgb(r / 255, g / 255, b / 255)
ctx.stroke()
#surface.write_to_png('/tmp/surf.png')
return numpyFromCairo(surface)
def solve(self, painting):
"""
given strokes of colors on a photo of the stage, figure out the
best light settings to match the image
"""
pic0 = self.draw(painting, 100, 48).astype(numpy.float)
pic0Blur = self._blur(pic0)
saveNumpy('/tmp/sample_paint_%s.png' % len(painting['strokes']),
pic0Blur)
sampleDist = {}
for sample, picSample in sorted(self.blurredSamples.items()):
#saveNumpy('/tmp/sample_%s.png' % sample.split('/')[-1],
# f(picSample))
dist = numpy.sum(numpy.absolute(pic0Blur - picSample), axis=None)
sampleDist[sample] = dist
results = [(d, uri) for uri, d in sampleDist.items()]
results.sort()
sample = results[0][1]
# this is wrong; some wrong-alignments ought to be dimmer than full
brightest0 = brightest(pic0)
brightestSample = brightest(self.samples[sample])
if max(brightest0) < 1 / 255:
return []
scale = brightest0 / brightestSample
out = []
with self.graph.currentState() as g:
for obj in g.objects(sample, L9['setting']):
attr = g.value(obj, L9['deviceAttr'])
val = getVal(g, obj)
if attr == L9['color']:
val = scaledHex(val, scale)
out.append((g.value(obj, L9['device']), attr, val))
return out
def solveBrute(self, painting):
pic0 = self.draw(painting, 100, 48).astype(numpy.float)
colorSteps = 3
colorStep = 1. / colorSteps
dims = [
(DEV['aura1'], L9['rx'], [slice(.2, .7+.1, .1)]),
(DEV['aura1'], L9['ry'], [slice(.573, .573+1, 1)]),
(DEV['aura1'], L9['color'], [slice(0, 1 + colorStep, colorStep),
slice(0, 1 + colorStep, colorStep),
slice(0, 1 + colorStep, colorStep)]),
]
def settingsFromVector(x):
settings = []
xLeft = x.tolist()
for dev, attr, _ in dims:
if attr == L9['color']:
rgb = (xLeft.pop(), xLeft.pop(), xLeft.pop())
settings.append((dev, attr, toHex(rgb)))
else:
settings.append((dev, attr, xLeft.pop()))
return settings
def drawError(x):
settings = settingsFromVector(x)
preview = self.combineImages(self.simulationLayers(settings))
saveNumpy('/tmp/x_%s.png' % abs(hash(tuple(settings))), preview)
diff = preview.astype(numpy.float) - pic0
out = scipy.sum(abs(diff))
#print 'measure at', x, 'drawError=', out
return out
x0, fval, grid, Jout = scipy.optimize.brute(
drawError,
sum([s for dev, da, s in dims], []),
finish=None,
disp=True,
full_output=True)
if fval > 30000:
raise ValueError('solution has error of %s' % fval)
return settingsFromVector(x0)
def combineImages(self, layers):
"""make a result image from our self.samples images"""
out = (self.fromPath.itervalues().next() * 0).astype(numpy.uint16)
for layer in layers:
colorScaled = self.fromPath[layer['path']] * layer['color']
out += colorScaled.astype(numpy.uint16)
numpy.clip(out, 0, 255, out)
return out.astype(numpy.uint8)
def simulationLayers(self, settings):
"""
how should a simulation preview approximate the light settings
(device attribute values) by combining photos we have?
"""
compiled = {} # dev: { attr: val }
for row in settings:
compiled.setdefault(row[0], {})[row[1]] = row[2]
layers = []
for dev, davs in compiled.items():
candidatePics = [] # (distance, path, picColor)
for (sample, path), s in self.sampleSettings.items():
for picDev, picDavs in s.items():
if picDev != dev:
continue
requestedAttrs = davs.copy()
picAttrs = picDavs.copy()
del requestedAttrs[L9['color']]
del picAttrs[L9['color']]
dist = attrDistance(picAttrs, requestedAttrs)
candidatePics.append((dist, path, picDavs[L9['color']]))
candidatePics.sort()
# we could even blend multiple top candidates, or omit all
# of them if they're too far
bestDist, bestPath, bestPicColor = candidatePics[0]
requestedColor = davs[L9['color']]
layers.append({'path': bestPath,
'color': colorRatio(requestedColor, bestPicColor)})
return layers
def attrDistance(attrs1, attrs2):
dist = 0
for key in set(attrs1).union(set(attrs2)):
if key not in attrs1 or key not in attrs2:
dist += 999
else:
dist += abs(attrs1[key] - attrs2[key])
return dist
|