comparison query.py @ 0:ca5da75f03ee

start
author drewp@bigasterisk.com
date Wed, 03 Jul 2024 19:16:28 -0700
parents
children 82428652cda1
comparison
equal deleted inserted replaced
-1:000000000000 0:ca5da75f03ee
1 from pathlib import Path
2 from pprint import pprint
3 import re
4 import sys
5 from extract_pdf import phrasesFromFile
6 from pymilvus import model
7 from pymilvus import MilvusClient
8
9 q, = sys.argv[1:]
10
11 def cleanup(phrase: str) -> str:
12 p = phrase.replace('\n', ' ')
13 p = re.sub(r'\s+', ' ', p)
14 if len(p) < 5:
15 return ''
16 return p
17
18
19 embedding_fn = model.DefaultEmbeddingFunction()
20
21 client = MilvusClient("milvus_demo.db")
22
23 # client.drop_collection(collection_name="demo_collection")
24 # if not client.has_collection(collection_name="demo_collection"):
25 # client.create_collection(
26 # collection_name="demo_collection",
27 # dimension=768, # The vectors we will use in this demo has 768 dimensions
28 # )
29
30 # docs = []
31 # for i, (bbox, phrase) in enumerate(phrasesFromFile(Path("data") / "Meetings2226Minutes_20240702182359526 (1).pdf")):
32 # phrase = cleanup(phrase)
33 # print(f'{phrase=}')
34 # if not phrase:
35 # continue
36
37 # [vector] = embedding_fn.encode_documents([phrase])
38 # doc = {
39
40 # "id": i,
41 # "vector": vector,
42 # "text": phrase,
43 # }
44 # docs.append(doc)
45 # res = client.insert(collection_name="demo_collection", data=docs)
46 # print('insert:', res)
47
48 query_vectors = embedding_fn.encode_queries([q])
49
50 [query_result] = client.search(
51 collection_name="demo_collection",
52 data=query_vectors,
53 limit=15,
54 output_fields=["text"],
55 )
56
57 for row in query_result:
58 print(f'{row["distance"]:.6f} {row["entity"]["text"]}')
59 # import ipdb; ipdb.set_trace()